Large Language Models (LLMs) have demonstrated strong potential across legal tasks, yet the problem of legal citation prediction remains under-explored. At its core, this task demands fine-grained contextual understanding and precise identification of relevant legislation or precedent. We introduce the AusLaw Citation Benchmark, a real-world dataset comprising 55k Australian legal instances and 18,677 unique citations which to the best of our knowledge is the first of its scale and scope. We then conduct a systematic benchmarking across a range of solutions: (i) standard prompting of both general and law-specialised LLMs, (ii) retrieval-only pipelines with both generic and domain-specific embeddings, (iii) supervised fine-tuning, and (iv) several hybrid strategies that combine LLMs with retrieval augmentation through query expansion, voting ensembles, or re-ranking. Results show that neither general nor law-specific LLMs suffice as stand-alone solutions, with performance near zero. Instruction tuning (of even a generic open-source LLM) on task-specific dataset is among the best performing solutions. We highlight that database granularity along with the type of embeddings play a critical role in retrieval-based approaches, with hybrid methods which utilise a trained re-ranker delivering the best results. Despite this, a performance gap of nearly 50% remains, underscoring the value of this challenging benchmark as a rigorous test-bed for future research in legal-domain.
@misc{auslawcitebenchmark,
title={Evaluating LLM-based Approaches to Legal Citation Prediction: Domain-specific Pre-training, Fine-tuning, or RAG? A Benchmark and an Australian Law Case Study},
author={Jiuzhou Han, Paul Burgess, Ehsan Shareghi},
year={2025},
eprint={arXiv:2412.06272v2},
archivePrefix={arXiv},
primaryClass={cs.CL}
}